Mapping bark bacteria: initial insights of stemflow-induced changes in bark surface phyla

Author:

Hudson J. E.1ORCID,Levia D. F.12ORCID,Yoshimura K. M.3ORCID,Gottel N. R.4ORCID,Hudson S. A.1ORCID,Biddle J. F.3ORCID

Affiliation:

1. Department of Geography and Spatial Sciences, University of Delaware , Newark, Delaware, USA

2. Department of Plant and Soil Sciences, University of Delaware , Newark, Delaware, USA

3. School of Marine Science and Policy, University of Delaware , Newark, Delaware, USA

4. Argonne National Lab, University of Chicago Medicine , Chicago, Illinois, USA

Abstract

ABSTRACT Life on and within bark surfaces is likely affected by many factors, including bark moisture, bark microrelief, bark pH, and the climatology of forests. The complex set of mutually interacting biotic and abiotic factors operating on bark surfaces presents a challenge in disentangling the linkages and connections between bark-dwelling organisms and biosphere-atmosphere interactions that modulate life in the canopy. Microbial communities on bark surfaces are under-represented in the literature. Given our knowledge of microbial diversity in the phyllosphere and rhizosphere and the impacts of climatology on that diversity, we hypothesized that tree bark would create a microenvironment that selects for specific microbes and that climatological and atmospheric influences from different land uses may further influence such microbial communities. Unfortunately, to our knowledge, no such study to test this hypothesis has been conducted. Recognizing this knowledge gap, samples were collected from bark and stemflow from two northern red oak trees in exurban and suburban forest fragments in the mid-Atlantic region before and after a rain event and subjected to DNA extraction and amplicon sequencing. Major phyla present on bark at both sites include Acidobacteria, Actinobacteria, Proteobacteria, and Bacteroidetes. Significant differences in amplicon sequence variants were observed between the two trees and between the northerly and southerly aspects of the sampled trees. The results of this pilot study highlight the critical need for future work examining the interplay among stemflow and microbial community composition and function (as a part of the larger ecosystem) in relation to varying land use. IMPORTANCE Compared with the phyllosphere, bacteria inhabiting bark surfaces are inadequately understood. Based on a preliminary pilot study, our work suggests that microbial populations vary across tree bark surfaces and may differ in relation to surrounding land use. Initial results suggest that stemflow, the water that flows along the bark surface, actively moves bacterial communities across a tree. These preliminary findings underscore the need for further study of niche microbial populations to determine whether there are connections between the biodiversity of microbiomes inhabiting corticular surfaces, land use, and hydrology.

Funder

Delaware IDeA Network of Biomedical Research Excellence

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3