Climate, Soil, and Plant Controls on Early-Stage Litter Decomposition in Moso Bamboo Stands at a Regional Scale

Author:

Orrego Marly,Ugawa Shin,Inoue Akio,Laplace Sophie,Kume Tomonori,Koga Shinya,Hishi Takuo,Enoki Tsutomu

Abstract

Moso bamboo (Phyllostachys edulis) is currently distributed across a wide geographical area in East Asia. As a common bamboo species occurring along a broad environmental gradient, there is a need to understand how environmental and biotic drivers affect belowground processes at large scales. In this study, we investigated the influence of climate, soil properties, stand characteristics, and organic matter input parameters as potential drivers of the initial decomposition process in Moso bamboo stands at a regional scale. Using the Tea Bag Index method, we estimated the initial decomposition rate (k) and stabilization factor (S; potential long-term carbon storage) from standard litter incubated at 13 sites across southern Japan and Taiwan. We found that both decomposition parameters were strongly affected by the climate. The climatic conditions during the incubation period better explained the variance in k. In contrast, the long-term climate was more important for S. Notably, temperature and precipitation interactively affected the initial decomposition rates. This interaction showed that in warmer sites, precipitation increased k, whereas in cooler sites, precipitation had no effect or even decreased k. Soil parameters had no influence on k and only had minor effects on S. A structural equation model showed that the stabilization factor was indirectly affected by stand density, which suggests that higher bamboo densities could increase litter stabilization by increasing above-and below-ground organic matter input. Our study highlights the central role of climate in controlling decomposition processes in Moso bamboo stands on a broad scale. Moreover, differences in stand structure can indirectly affect potential soil carbon storage through changes in organic matter input and soil conditions.

Funder

Japan Society for the Promotion of Science

Publisher

Frontiers Media SA

Subject

Nature and Landscape Conservation,Environmental Science (miscellaneous),Ecology,Global and Planetary Change,Forestry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3