Assessing Lignin Decomposition and Soil Organic Carbon Contents Across a Tropical Savannah-Rainforest Boundary in Guyana

Author:

Black Jasmine E.,Wagner Thomas,Abbott Geoffrey D.

Abstract

The soils beneath the rainforest of Guyana have the potential to hold, and release, large stores of carbon under land use and climate change. Little is known about soil carbon stocks or molecular dynamics in this region. This study therefore aims to elucidate differences in the molecular (lignin and tannin) and bulk soil organic carbon (SOC) stocks in different ‘sub-environments’ along a rainforest-savannah boundary, setting a framework for further investigation into the soil carbon dynamics of the region. Bulk SOC analysis shows that Gleysols have the highest stocks, particularly those under rainforest vegetation (swamp and island forests surrounded by savannah), whereas Plinthosols have significantly lower SOC stocks. Texture and soil water content analysis indicates that predominantly clay soils play a role in high SOC stocks, whilst predominantly sandy soils prevent SOC stocks from accumulating. Clay and sand are present in both Gleysols and Plinthosols, to different extents. Analysis of lignin and tannin in surface soils of the sub-environments reveals clear differences in molecular composition. Heavily degraded lignin signatures in rainforest Gleysols suggests a surrounding physio-chemical environment which promotes their degradation. Conversely, Plinthosols beneath woodland within the savannah have the greatest amount of lignin and tannin products. The presence of the clay mineral kaolinite and iron oxide strengite in these soils indicates a low ability for protection or complexing of organic matter. Therefore, water content and microbial activity may play a more important role in the degradation of lignin and tannin, as well as the SOC stock. With the potential for future deforestation due to land use or climate change, the high lignin degradation of Gleysols indicates a vulnerability to savannah encroachment. Forest Islands isolated from the main forest biome are the most vulnerable to change, and could lose a significant proportion of their SOC stock in a transition to savannah.

Funder

Natural Environment Research Council

Wolfson Foundation

UK Research and Innovation

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3