Metagenomic clustering links specific metabolic functions to globally relevant ecosystems

Author:

Flinkstrom Zachary1ORCID,Bryson Samuel2ORCID,Candry Pieter13ORCID,Winkler Mari-Karoliina H.1

Affiliation:

1. Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA

2. Phase Genomics, Seattle, Washington, USA

3. Laboratory of Systems & Synthetic Biology, Wageningen University & Research, Wageningen, Netherlands

Abstract

ABSTRACT Metagenomic sequencing has advanced our understanding of biogeochemical processes by providing an unprecedented view into the microbial composition of different ecosystems. While the amount of metagenomic data has grown rapidly, simple-to-use methods to analyze and compare across studies have lagged behind. Thus, tools expressing the metabolic traits of a community are needed to broaden the utility of existing data. Gene abundance profiles are a relatively low-dimensional embedding of a metagenome’s functional potential and are, thus, tractable for comparison across many samples. Here, we compare the abundance of KEGG Ortholog Groups (KOs) from 6,539 metagenomes from the Joint Genome Institute’s Integrated Microbial Genomes and Metagenomes (JGI IMG/M) database. We find that samples cluster into terrestrial, aquatic, and anaerobic ecosystems with marker KOs reflecting adaptations to these environments. For instance, functional clusters were differentiated by the metabolism of antibiotics, photosynthesis, methanogenesis, and surprisingly GC content. Using this functional gene approach, we reveal the broad-scale patterns shaping microbial communities and demonstrate the utility of ortholog abundance profiles for representing a rapidly expanding body of metagenomic data. IMPORTANCE Metagenomics, or the sequencing of DNA from complex microbiomes, provides a view into the microbial composition of different environments. Metagenome databases were created to compile sequencing data across studies, but it remains challenging to compare and gain insight from these large data sets. Consequently, there is a need to develop accessible approaches to extract knowledge across metagenomes. The abundance of different orthologs (i.e., genes that perform a similar function across species) provides a simplified representation of a metagenome’s metabolic potential that can easily be compared with others. In this study, we cluster the ortholog abundance profiles of thousands of metagenomes from diverse environments and uncover the traits that distinguish them. This work provides a simple to use framework for functional comparison and advances our understanding of how the environment shapes microbial communities.

Funder

U.S. Department of Energy

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3