A Multi-Criteria Decision Support System for Strategic Planning at the Swiss Forest Enterprise Level: Coping With Climate Change and Shifting Demands in Ecosystem Service Provisioning

Author:

Thrippleton Timothy,Blattert Clemens,Bont Leo Gallus,Mey Reinhard,Zell Jürgen,Thürig Esther,Schweier Janine

Abstract

Sustainable forest management plays a key role for forest biodiversity and the provisioning of ecosystem services (BES), including the important service of carbon sequestration for climate change mitigation. Forest managers, however, find themselves in the increasingly complex planning situation to balance the often conflicting demands in BES. To cope with this situation, a prototype of a decision support system (DSS) for strategic (long-term) planning at the forest enterprise level was developed in the present project. The DSS was applied at three case study enterprises (CSEs) in Northern Switzerland, two lowland and one higher-elevation enterprise, for a 50-year time horizon (2010 to 2060) under present climate and three climate change scenarios (‘wet’, ‘medium’, ‘dry’). BES provisioning (for biodiversity, timber production, recreation, protection against gravitational hazards and carbon sequestration) was evaluated for four management scenarios (no management, current (BAU), lower and higher management intensity) using a utility-based multi-criteria decision analysis. Additionally, four alternative preference scenarios for BES provisioning were investigated to evaluate the robustness of the results to shifting BES preferences. At all CSEs, synergies between carbon sequestration, biodiversity and protection function as well as trade-offs between carbon sequestration and timber production occurred. The BAU management resulted in the highest overall utility in 2060 for different climate and BES preference scenarios, with the exception of one lowland CSE under current BES preference, where a lower intensity management performed best. Although climate change had a relatively small effect on overall utility, individual BES indicators showed a negative climate change impact for the lowland CSEs and a positive effect for the higher elevation CSE. The patterns of overall utility were relatively stable to shifts in BES preferences, with exception of a shift toward a preference for carbon sequestration. Overall, the study demonstrates the potential of the DSS to investigate the development of multiple BES as well as their synergies and trade-offs for a set of lowland and mountainous forest enterprises. The new system incorporates a wide set of BES indicators, a strong empirical foundation and a flexible multi-criteria decision analysis, enabling stakeholders to take scientifically well-founded decisions under changing climatic conditions and political goals.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Frontiers Media SA

Subject

Nature and Landscape Conservation,Environmental Science (miscellaneous),Ecology,Global and Planetary Change,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3