Does Soil Acidification Matter? Nutrient Sustainability of Timber Harvesting in Forests on Selected Soils Developed in Sediments of the Early vs. Late Pleistocene

Author:

Zimmermann Stephan1ORCID,Kurz Daniel2,Thrippleton Timothy1,Mey Reinhard3ORCID,Perry Niál Thomas1,Posch Maximilian4,Schweier Janine1ORCID

Affiliation:

1. Swiss Federal Institute for Forest, Snow and Landscape Research, 8903 Birmensdorf, Switzerland

2. EKG Geo-Science, 3011 Bern, Switzerland

3. Forestry Research and Competence Centre, ThüringenForst AöR, Jägerstr. 1, 99867 Gotha, Germany

4. International Institute for Applied Systems Analysis (IIASA), A-2361 Laxenburg, Austria

Abstract

With this study, our aim was to estimate the nutrient fluxes relevant for assessing nutrient sustainability as accurately as possible and to calculate nutrient balances for alternative forest management scenarios. Furthermore, we tested whether mapping units from existing geologic maps can serve as a basis for forest practitioners to estimate nutrient sustainability or whether more detailed data are needed. Positive fluxes include deposition and weathering, while negative fluxes include losses due to leaching and nutrient removal through timber harvesting in the balance. Weathering and leachate losses were modeled with a geochemical model. The SwissStandSim model was used to simulate the biomass growth under different harvesting and silvicultural strategies, allowing for sustainability to be assessed for each nutrient at a given intensity of use. This assessment was made per rotation period based on two criteria: (i) nutrient supply and (ii) total stocking volume. As a result, it can be noted that the accurate estimation of individual fluxes is essential for assessing the sustainability of forestry practices and that it needs detailed site-specific data. Various influencing factors turned out to be important, particularly the assumed depth of the root zone.

Funder

Swiss Forest and Wood Research Promotion Agency / Conference for Forest, Wildlife and Landscape

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3