Effects of elevated temperature and abnormal precipitation on soil carbon and nitrogen dynamics in a Pinus densiflora forest

Author:

Woo Dong Kook,Seo Yongwon

Abstract

Forests have the largest terrestrial nutrient pools. The loss of soil carbon and nitrogen in forests under ongoing climate warming is subject to severe environmental degradation. To mitigate the negative effects of global warming on soil carbon and nitrogen in forest, it is important to obtain a better understanding of how elevated temperature and altered precipitation variability impact soil nutrient dynamics. To explore such interactions, we coupled an eco-hydrological model (Multi-Layer Canopy model, MLCan) with a biogeochemical model and applied the combined model to Pinus densiflora forest in Gwangneung Experimental Forest, South Korea, from 2004 to 2020. Our results showed that there was a time lag of 4 years to trigger soil organic carbon losses under the elevated temperature of +1.11°C during 2014–2020 compared to 2010–2013. A temperature rise over a prolonged period increased microbial biomass and activity, stimulating soil organic carbon decomposition. The combination of soil nitrate accumulation and exceptional but expected delay in heavy precipitation seasons of 2 months led to nitrate leaching four times higher than the average at 1 m depth in 2010. Reduced evapotranspiration and heavy precipitation during early fall caused intense subsurface water flux, resulting in a great increase in the risk of nitrate leaching. Our results highlight that the impacts of global warming on soil carbon decompositions has a time lag of 4 years and changes in precipitation characteristics will lead to excessive nitrate loss in P. densiflora forests under climate change.

Funder

Keimyung University

Publisher

Frontiers Media SA

Subject

Nature and Landscape Conservation,Environmental Science (miscellaneous),Ecology,Global and Planetary Change,Forestry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3