Temporal and spatial dynamics in emission of water-soluble ions in fine particulate matter during forest fires in Southwest China

Author:

Zhan Xiaoyu,Ma Yuanfan,Huang Ziyan,Zheng Chenyue,Lin Haichuan,Tigabu Mulualem,Guo Futao

Abstract

AimsThe aim of this study was to analyze changes in emission of water-soluble ions in fine particulate matter over time and in different southwest forest areas in China based on China’s Forestry Statistical Yearbook and MODIS satellite fire point data.MethodsWe took 6 dominant tree species samples in the southwestern forest region of China and simulated combustion using controllable biomass combustion devices. Based on the spatial analysis method of ArcGIS, combining satellite fire point data and official statistical yearbooks, we analyzed the spatial and temporal dynamics of emissions of water-soluble ions in PM2.5 released by forest fires in southwestern forest areas from 2004 to 2021.ResultsThe total amount of forest biomass combusted in southwest forest areas was 64.43 kt. Among the different forest types, the proportion of burnt subtropical evergreen broad-leaved forest was the largest (60.49%) followed by subtropical mixed coniferous and broad-leaved forest (22.78%) and subtropical evergreen coniferous forest (16.72%). During the study period, 61.19 t of water-soluble ions were released in PM2.5 from forest fires, and the emissions of Li+, Na+, NH4+, K+, Mg2+, Ca2+, F, Cl, Br, NO3, PO43− and SO42− were 0.48 t, 11.54 t, 2.51 t, 19.44 t, 2.12 t, 2.92 t, 1.94 t, 12.70 t, 1.12 t, 1.18 t, 1.17 t and 4.07 t, respectively. Yunnan was the province with the highest emissions of water-soluble ions in PM2.5 in the southwest forest areas, and the concentration K+ was the highest. Emission of water-soluble ions in Yunnan and Sichuan all showed a significant downward trend, while the overall decrease in Tibet, Chongqing and Guizhou was not significant. The peak emission of water-soluble ions in PM2.5 during forest fires appeared in spring and winter, which accounted for 87.66% of the total emission.DiscussionThis study reveals the spatiotemporal changes in water-soluble ion emissions from forest fires, by studying the spatiotemporal dynamics of water-soluble ions in PM2.5, we can better understand the sources, distribution, and change patterns of these ions, as well as their impact on the atmospheric environment, ecosystems, and climate change. This information is crucial for predicting and managing air pollution, as well as developing effective forest management and environmental protection policies to respond to fires; and hence concerted fire prevention efforts should be made in each province, taking into account the season with higher probability of fire occurrence to reduce the potential impact of fire-related pollutions.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Nature and Landscape Conservation,Environmental Science (miscellaneous),Ecology,Global and Planetary Change,Forestry

Reference86 articles.

1. Wildfire smoke impacts respiratory health more than fine particles from other sources: observational evidence from Southern California;Aguilera;Nat. Commun.,2021

2. Study on the relationship among forest fire, temperature and precipitation and its spatial–temporal variability in China;Ai-feng;Agric. Sci. Technol. Hunan,2011

3. Fireplace and woodstove fine particle emissions from combustion of western Mediterranean wood types;Alves;Atmos. Res.,2011

4. Atmospheric conditions associated with extreme fire activity in the Western Mediterranean region;Amraoui;Sci. Total Environ.,2015

5. A human-driven decline in global burned area;Andela;Science,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3