Analysis of PM2.5 Concentration Released from Forest Combustion in Liangshui National Natural Reserve, China

Author:

Wu Zhiyuan1,Hasham Ahmad1,Zhang Tianbao1,Gu Yu1,Lu Bingbing1,Sun Hu12,Shu Zhan1

Affiliation:

1. School of Forestry, Northeast Forestry University, Harbin 150040, China

2. Administration Bureau of Heilongjiang Liangshui National Natural Reserve, Yichun 153000, China

Abstract

(1) Background: In recent years, forest fires have become increasingly frequent both domestically and internationally. The pollutants emitted from the burning of fuel have exerted considerable environmental stress. To investigate the influence of forest fires on the atmospheric environment, it is crucial to analyze the variations in PM2.5 emissions from various forest fuels under differing fire conditions. This assessment is essential for evaluating the effects on both the atmospheric environment and human health. (2) Methods: Indoor simulated combustion experiments were conducted on the branches, leaves, and bark of typical tree species in the Liangshui National Natural Reserve, including Pinus koraiensis (PK), Larix gmelinii (LG), Picea koraiensis (PAK), Betula platyphylla (BP), Fraxinus mandshurica (FM), and Populus davidiana (PD). The PM2.5 concentrations emitted by six tree species under various combustion states were measured and analyzed, reflecting the impact of moisture content on the emission of pollutants from fuel combustion, as indicated by the emission factors for pollutants. (3) Results: Under different fuel loading and moisture content conditions, the mass concentration values of PM2.5 emitted from the combustion of different organs of various tree species exhibit variability. (4) Conclusions: Among the various tree species, broad-leaved varieties release a greater quantity of PM2.5 compared to coniferous ones. A positive correlation exists between the moisture content of the fuel and the concentration of PM2.5; changes in moisture content notably influence PM2.5 levels. The emission of PM2.5 from fuel with varying loads increases exponentially. Utilizing the Response Surface Methodology (RSM) model for simulation, it was determined that both moisture content and fuel load exert a significant combined effect on the release of PM2.5 during combustion.

Funder

National Pipeline Network Group Fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3