The effects of vegetation type on ecosystem carbon storage and distribution in subtropical plantations

Author:

Huang Wei-Qi,Xu Bin,Chen Fu-Sheng,Zong Ying-Ying,Duan Xiao-Qing,Zhang Guang-Xin,Wu Zi-Jun,Fang Xiang-Min

Abstract

Establishing plantation forests significantly increases the carbon (C) storage of terrestrial ecosystems. However, how vegetation types affect the ecosystem C sequestration capacity is not completely clear. Here, a slash pine plantation (SPP), a Schima superba plantation (SSP), and a Masson pine plantation (MPP), which have been planted for 30 years, were selected in subtropical China. The C storage and distribution patterns of plant, litter, and soil were investigated and calculated. The ecosystem C density was 17.7, 21.6, and 15.3 kg m–2 for SPP, SSP, and MPP, respectively. Ecosystem C stocks were mainly contributed by tree aboveground (39.9–46.0%) and soil C stocks (41.6–44.2%). The ecosystem C density of SSP was higher than that of SPP and MPP, and significant differences were found among three plantations for both aboveground and underground C densities. The aboveground and underground ecosystem C storage of SSP was 27.4 and 53.4% higher than that of MPP, respectively. Meanwhile, root C storage of MPP was lower than that of SPP and SSP, while soil C storage of MPP was lower than that of SSP. In the understory layer, SPP had the highest C density, followed by MPP, and there was a significant difference in C density among three plantations. However, no significant difference was found for the ecosystem C distribution among three plantations. Our results show that vegetation types significantly affect C storage but not C distribution in forest ecosystems and establishing the broad-leaved plantation has the highest ecosystem C storage in the subtropics. This study provides a theoretical basis for us to choose appropriate forest management measures.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Nature and Landscape Conservation,Environmental Science (miscellaneous),Ecology,Global and Planetary Change,Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3