Re-appraisal of the global climatic role of natural forests for improved climate projections and policies

Author:

Makarieva Anastassia M.,Nefiodov Andrei V.,Rammig Anja,Nobre Antonio Donato

Abstract

Along with the accumulation of atmospheric greenhouse gases, particularly carbon dioxide, the loss of primary forests and other natural ecosystems is a major disruption of the Earth's system and is causing global concern. Quantifying planetary warming from carbon emissions, global climate models highlight natural forests' high carbon storage potential supporting conservation policies. However, some model outcomes effectively deprioritize conservation of boreal and temperate forests by suggesting that increased albedo upon deforestation could cool the planet. A potential conflict of global cooling vs. regional forest conservation could harm environmental policies. Here we present theoretical and observational evidence to demonstrate that, compared to the carbon-related warming, modeling skills for assessing climatic impacts of deforestation is low. We argue that estimates for deforestation-induced global cooling result from the models' limited capacity to account for the global effect of cooling from evapotranspiration of intact forests. Specifically, transpiration of trees can change the greenhouse effect via small modifications of the vertical temperature profile. However, due to their convective parameterization (which postulates a certain critical temperature profile), global climate models do not properly capture this effect. This may lead to an underestimation of warming from the loss of forest evapotranspiration in both high and low latitudes. As a result, conclusions about deforestation-induced global cooling are not robust and could result in action that immediately worsened global warming. To avoid deepening the environmental crisis, these conclusions should not inform policies of vegetation cover management, especially as studies from multiple fields are accumulating that better quantify the stabilizing impact of natural ecosystems evolved to maintain environmental homeostasis. Given the critical state and our limited understanding of both climate and ecosystems, an optimal policy with immediate benefits would be a global moratorium on the exploitation of all natural forests.

Funder

Institute for Advanced Study, Technische Universität München

Publisher

Frontiers Media SA

Subject

Nature and Landscape Conservation,Environmental Science (miscellaneous),Ecology,Global and Planetary Change,Forestry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3