Presence or absence of stabilizing Earth system feedbacks on different time scales

Author:

Arnscheidt Constantin W.1ORCID,Rothman Daniel H.1ORCID

Affiliation:

1. Lorenz Center, Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.

Abstract

The question of how Earth’s climate is stabilized on geologic time scales is important for understanding Earth’s history, long-term consequences of anthropogenic climate change, and planetary habitability. Here, we quantify the typical amplitude of past global temperature fluctuations on time scales from hundreds to tens of millions of years and use it to assess the presence or absence of long-term stabilizing feedbacks in the climate system. On time scales between 4 and 400 ka, fluctuations fail to grow with time scale, suggesting that stabilizing mechanisms like the hypothesized “weathering feedback” have exerted dominant control in this regime. Fluctuations grow on longer time scales, potentially due to tectonically or biologically driven changes that make weathering act as a climate forcing and a feedback. These slower fluctuations show no evidence of being damped, implying that chance may still have played a nonnegligible role in maintaining the long-term habitability of Earth.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3