Development and feasibility evaluation of an AR-assisted radiotherapy positioning system

Author:

Zhang Gongsen,Liu Xinchao,Wang Linlin,Zhu Jian,Yu Jinming

Abstract

PurposeThe aim of this study is to develop an augmented reality (AR)–assisted radiotherapy positioning system based on HoloLens 2 and to evaluate the feasibility and accuracy of this method in the clinical environment.MethodsThe obtained simulated computed tomography (CT) images of an “ISO cube”, a cube phantom, and an anthropomorphic phantom were reconstructed into three-dimensional models and imported into the HoloLens 2. On the basis of the Vuforia marker attached to the “ISO cube” placed at the isocentric position of the linear accelerator, the correlation between the virtual and real space was established. First, the optimal conditions to minimize the deviation between virtual and real objects were explored under different conditions with a cube phantom. Then, the anthropomorphic phantom–based positioning was tested under the optimal conditions, and the positioning errors were evaluated with cone-beam CT.ResultsUnder the normal light intensity, the registration and tracking angles are 0°, the distance is 40 cm, and the deviation reached a minimum of 1.4 ± 0.3 mm. The program would not run without light. The hologram drift caused by the light change, camera occlusion, and head movement were 0.9 ± 0.7 mm, 1.0 ± 0.6 mm, and 1.5 ± 0.9 mm, respectively. The anthropomorphic phantom–based positioning errors were 3.1 ± 1.9 mm, 2.4 ± 2.5 mm, and 4.6 ± 2.8 mm in the X (lateral), Y (vertical), and Z (longitudinal) axes, respectively, and the angle deviation of Rtn was 0.26 ± 0.14°.ConclusionThe AR-assisted radiotherapy positioning based on HoloLens 2 is a feasible method with certain advantages, such as intuitive visual guidance, radiation-free position verification, and intelligent interaction. Hardware and software upgrades are expected to further improve accuracy and meet clinicalbrendaannmae requirements.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

Frontiers Media SA

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3