Author:
Zhang Gongsen,Liu Xinchao,Wang Linlin,Zhu Jian,Yu Jinming
Abstract
PurposeThe aim of this study is to develop an augmented reality (AR)–assisted radiotherapy positioning system based on HoloLens 2 and to evaluate the feasibility and accuracy of this method in the clinical environment.MethodsThe obtained simulated computed tomography (CT) images of an “ISO cube”, a cube phantom, and an anthropomorphic phantom were reconstructed into three-dimensional models and imported into the HoloLens 2. On the basis of the Vuforia marker attached to the “ISO cube” placed at the isocentric position of the linear accelerator, the correlation between the virtual and real space was established. First, the optimal conditions to minimize the deviation between virtual and real objects were explored under different conditions with a cube phantom. Then, the anthropomorphic phantom–based positioning was tested under the optimal conditions, and the positioning errors were evaluated with cone-beam CT.ResultsUnder the normal light intensity, the registration and tracking angles are 0°, the distance is 40 cm, and the deviation reached a minimum of 1.4 ± 0.3 mm. The program would not run without light. The hologram drift caused by the light change, camera occlusion, and head movement were 0.9 ± 0.7 mm, 1.0 ± 0.6 mm, and 1.5 ± 0.9 mm, respectively. The anthropomorphic phantom–based positioning errors were 3.1 ± 1.9 mm, 2.4 ± 2.5 mm, and 4.6 ± 2.8 mm in the X (lateral), Y (vertical), and Z (longitudinal) axes, respectively, and the angle deviation of Rtn was 0.26 ± 0.14°.ConclusionThe AR-assisted radiotherapy positioning based on HoloLens 2 is a feasible method with certain advantages, such as intuitive visual guidance, radiation-free position verification, and intelligent interaction. Hardware and software upgrades are expected to further improve accuracy and meet clinicalbrendaannmae requirements.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shandong Province
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献