Application of image recognition-based tracker-less augmented reality navigation system in a series of sawbone trials

Author:

Chui Elvis Chun-Sing,Mak Kyle Ka-Kwan,Ng Randy Hin-Ting,Fung Ericsson Chun-Hai,Mak Harold Hei-Ka,Chan Mei-Shuen,Zhao Wei,Su Xiuyun,Zhang Jin,Xu Jianglong,Sang Hongxun,Pei Guoxian,Ong Michael Tim-Yun,Cheung Wing-Hoi,Law Sheung-Wai,Wong Ronald Man Yeung,Yung Patrick Shu-Hang

Abstract

Abstract Background This study introduced an Augmented Reality (AR) navigation system to address limitations in conventional high tibial osteotomy (HTO). The objective was to enhance precision and efficiency in HTO procedures, overcoming challenges such as inconsistent postoperative alignment and potential neurovascular damage. Methods The AR-MR (Mixed Reality) navigation system, comprising HoloLens, Unity Engine, and Vuforia software, was employed for pre-clinical trials using tibial sawbone models. CT images generated 3D anatomical models, projected via HoloLens, allowing surgeons to interact through intuitive hand gestures. The critical procedure of target tracking, essential for aligning virtual and real objects, was facilitated by Vuforia’s feature detection algorithm. Results In trials, the AR-MR system demonstrated significant reductions in both preoperative planning and intraoperative times compared to conventional navigation and metal 3D-printed surgical guides. The AR system, while exhibiting lower accuracy, exhibited efficiency, making it a promising option for HTO procedures. The preoperative planning time for the AR system was notably shorter (4 min) compared to conventional navigation (30.5 min) and metal guides (75.5 min). Intraoperative time for AR lasted 8.5 min, considerably faster than that of conventional navigation (31.5 min) and metal guides (10.5 min). Conclusions The AR navigation system presents a transformative approach to HTO, offering a trade-off between accuracy and efficiency. Ongoing improvements, such as the incorporation of two-stage registration and pointing devices, could further enhance precision. While the system may be less accurate, its efficiency renders it a potential breakthrough in orthopedic surgery, particularly for reducing unnecessary harm and streamlining surgical procedures.

Funder

Innovation and Technology Fund

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3