OSgc: A Web Portal to Assess the Performance of Prognostic Biomarkers in Gastric Cancer

Author:

Xie Longxiang,Wang Qiang,Yan Zhongyi,Han Yali,Ma Xiaoyu,Li Huimin,Zhang Lu,Li Xianzhe,Guo Xiangqian

Abstract

Evaluating the prognostic value of genes of interest in different populations of gastric cancer (GC) is difficult and time-consuming for basic and translational researchers even though many datasets are available in public dataset depositories. In the current study, we developed a robust web-based portal called OSgc (Online consensus Survival analysis of gastric cancer) that enables easy and swift verification of known and novel biomarker candidates in GC. OSgc is composed of gene expression profiling data and clinical follow-up information of 1,824 clinical GC cases, which are collected from 7 public independent datasets derived from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). By OSgc, users input the official gene symbol and will promptly retrieve the Kaplan–Meier survival plot with hazard ratio (HR) and log rank p value on the output webpage, by which users could assess the prognostic value of interesting genes for GC patients. Five survival end points containing overall survival, progression-free survival, progression-free interval, relapse-free survival, and disease-free survival could be measured in OSgc. OSgc can greatly help cancer biologists and clinicians to explore the effect of gene expression on patient survival. OSgc is freely available without restrictions at http://bioinfo.henu.edu.cn/GC/GCList.jsp.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Cancer Research,Oncology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MulMarker: a comprehensive framework for identifying multi-gene prognostic signatures;2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM);2023-12-05

2. BIRC5 Inhibition Is Associated with Pyroptotic Cell Death via Caspase3-GSDME Pathway in Lung Adenocarcinoma Cells;International Journal of Molecular Sciences;2023-09-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3