BIRC5 Inhibition Is Associated with Pyroptotic Cell Death via Caspase3-GSDME Pathway in Lung Adenocarcinoma Cells

Author:

Zhang Qingwei12,Chen Ximing1,Hu Yingying1,Zhou Tong1,Du Menghan1,Xu Run1,Chen Yongchao1,Tang Pingping1,Chen Zhouxiu1,Li Jiamin1

Affiliation:

1. Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150081, China

2. NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin 150081, China

Abstract

Lung adenocarcinoma (LUAD) is a prevalent type of thoracic cancer with a poor prognosis and high mortality rate. However, the exact pathogenesis of this cancer is still not fully understood. One potential factor that can contribute to the development of lung adenocarcinoma is DNA methylation, which can cause changes in chromosome structure and potentially lead to the formation of tumors. The baculoviral IAP repeat containing the 5 (BIRC5) gene encodes the Survivin protein, which is a multifunctional gene involved in cell proliferation, migration, and invasion of tumor cells. This gene is elevated in various solid tumors, but its specific role and mechanism in lung adenocarcinoma are not well-known. To identify the potential biomarkers associated with lung adenocarcinoma, we screened the methylation-regulated differentially expressed genes (MeDEGs) of LUAD via bioinformatics analysis. Gene ontology (GO) process and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were applied to investigate the biological function and pathway of MeDEGs. A protein–protein interaction (PPI) network was employed to explore the key module and screen hub genes. We screened out eight hub genes whose products are aberrantly expressed, and whose DNA methylation modification level is significantly changed in lung adenocarcinoma. BIRC5 is a bona fide marker which was remarkably up-regulated in tumor tissues. Flow cytometry analysis, lactate dehydrogenase release (LDH) assay and Micro-PET imaging were performed in A549 cells and a mouse xenograft tumor to explore the function of BIRC5 in cell death of lung adenocarcinoma. We found that BIRC5 was up-regulated and related to a high mortality rate in lung adenocarcinoma patients. Mechanically, the knockdown of BIRC5 inhibited the proliferation of A549 cells and induced pyroptosis via caspase3/GSDME signaling. Our findings have unraveled that BIRC5 holds promise as a novel biomarker and therapeutic target for lung adenocarcinoma. Additionally, we have discovered a novel pathway in which BIRC5 inhibition can induce pyroptosis through the caspase3-GSDME pathway in lung adenocarcinoma cells.

Funder

Young Talents Startup Foundation of College of Pharmacy

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3