Inhibition of induced-hepatic cancer in vivo through IQGAP1-shRNA gene therapy and modulation of TRAIL-induced apoptosis pathway

Author:

Zoheir Khairy M. A.,Abd-Rabou Ahmed A.,Darwish Ahmed M.,Abdelhafez Mohamed A.,Mahrous Karima F.

Abstract

BackgroundLiver cancer is the deadliest malignancy among common tumors. It is the top cause of cancer-related deaths in Egypt, and it is characterized by increasing occurrence among the population. The objective of this study was to determine the outcome of pre-treatment of IQGAP1-shRNA on induced mouse hepatocellular carcinoma model and evaluate the potency of this IQGAP1-shRNA plasmid to recover hepatic cancer as a new tool of cancer therapy. Therefore, we will use RNA interference (RNAi) technology to silence IQGAP1 oncogene to completely recover the chemically induced models for hepatic cancer by designing short RNAi specific for IQGAP1 gene in HCC cells in vivo and construct new vectors suitable for this purpose. We assigned mice into three groups: the first negative control group (NC) was injected with saline, the second control group was injected with shRNA (shNC), the third positive control group was injected with diethylnitrosamine (DENAA), and the fourth group was treated with the IQGAP1-shRNA prior to its exposure to DENA.ResultsOur results revealed that the treated group with IQGAP1-shRNA with DENA developed very few cases of hepatic cancer when compared with the positive control group. The positive control group exhibited significant increases in the liver function level as well as a decrease in serum albumin levels when compared to both the treated and the negative control groups. The altered levels of the serum α-fetoprotein as well as of the tumor necrosis factor-alpha, and interleukin-4 in DENA-treated mice were significantly ameliorated by IQGAP1-shRNA administration. Flow cytometer analyses have indicated that the silencing of IQGAP1 cannot significantly modulate DENA-induced apoptosis in the circulating blood cells. Moreover, the elevated mRNA expression levels of IQGAP1, IQGAP3, KRas, HRas, interleukin-8, nuclear factor kappa B, caspase-3, caspase-9 and Bcl-2, were significantly decreased by the IQGAP1-shRNA treatment. However, the IQGAP2, DR4, DR5, p53 and BAX genes were found to be significantly up-regulated post-therapy. In agreement with these findings, IQGAP1-shRNA was able to modulate the DENA-induced histological changes in the mice liver which were represented by severe necrosis and hydropic degenerative changes.ConclusionOur study revealed that IQGAP1-shRNA was able to preserve hepatocyte integrity and the liver histological architecture through the regulation of the expression of IQGAPs, Ras, TRAILs and IL-8 receptors, as well as of pro-apoptotic and anti-apoptotic genes. Therefore, the silencing of IQGAP1 could be part of a promising therapeutic strategy against hepatic cancer.

Publisher

Frontiers Media SA

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3