The Pharmacological or Genetic Blockade of Endogenous De Novo Fatty Acid Synthesis Does Not Increase the Uptake of Exogenous Lipids in Ovarian Cancer Cells

Author:

Grunt Thomas W.,Lemberger Lisa,Colomer Ramón,López−Rodríguez María Luz,Wagner Renate

Abstract

Ovarian cancer(OC) is a serious threat to women worldwide. Peritoneal dissemination, ascites and omental metastasis are typical features for disease progression, which occurs in a micro-environment that is rich in high-energy lipids. OC cells require high amounts of lipids for survival and growth. Not only do they import lipids from the host, they also produce lipidsde novo. Inhibitors of fatty acid(FA) synthase(FASN) – the rate-limiting enzyme of endogenous FA synthesis that is overexpressed in OC – induce growth-arrest and apoptosis, rendering them promising candidates for cancer drug development. However, cancer researchers have long hypothesized that the lipid deficiency caused by FASN inhibition can be circumvented by increasing the uptake of exogenous lipids from the host, which would confer resistance to FASN inhibitors. In contrast to a very recent report in colorectal cancer, we demonstrate in OC cells (A2780, OVCAR3, SKOV3) that neither FASN inhibitors (G28UCM, Fasnall) nor FASN-specific siRNAs can stimulate a relief pathway leading to enhanced uptake of extrinsic FAs or low density lipoproteins (LDLs). Instead, we observed that the growth-arrest due to FASN inhibition or FASN knock-down was associated with significant dose- and time-dependent reduction in the uptake of fluorescently labeled FAs and LDLs. Western blotting showed that the expression of the FA receptor CD36, the LDL receptor(LDLR) and the lipid transport proteins fatty acid binding proteins 1–9 (FABP1–9) was not affected by the treatment. Next, we compared experimental blockade of endogenous lipid production with physiologic depletion of exogenous lipids. Lipid-free media, similar to FASN inhibitors, caused growth-arrest. Although lipid-depleted cells have diminished amounts of CD36, LDLR and FABPs, they can still activate a restorative pathway that causes enhanced import of fluorophore-labeled FAs and LDLs. Overall, our data show that OC cells are strictly lipid-depend and exquisitely sensitive to FASN inhibitors, providing a strong rationale for developing anti-FASN strategies for clinical use against OC.

Funder

Magistrat der Stadt Wien

Medizinische Universität Wien

Herzfelder'sche Familienstiftung

Publisher

Frontiers Media SA

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3