A Practical Nomogram and Risk Stratification System Predicting the Cancer-Specific Survival for Patients With Advanced Hepatocellular Carcinoma

Author:

Yang Dashuai,Su Yang,Zhao Fangrui,Chen Chen,Zhao Kailiang,Xiong Xiangyun,Ding Youming

Abstract

BackgroundHepatocellular carcinoma (HCC) has the highest cancer-related mortality rate. This study aims to create a nomogram to predict the cancer-specific survival (CSS) in patients with advanced hepatocellular carcinoma.MethodsPatients diagnosed with advanced HCC (AJCC stage III and IV) during 1975 to 2018 were obtained from the Surveillance, Epidemiology, and End Results (SEER) database. Qualified patents were randomized into training cohort and validation cohort at a ratio of 7:3. The results of univariate and multivariate Cox regression analyses were used to construct the nomogram. Consistency index (C-index), area under the time-dependent receiver operating characteristic (ROC) curve [time-dependent area under the curve (AUC)], and calibration plots were used to identify and calibrate the nomogram. The net reclassification index (NRI), integrated discrimination improvement (IDI), and C-index, and decision curve analysis DCA were adopted to compare the nomogram’s clinical utility with the AJCC criteria.ResultsThe 3,103 patients with advanced hepatocellular carcinoma were selected (the training cohort: 2,175 patients and the validation cohort: 928 patients). The C-index in both training cohort and validation cohort were greater than 0.7. The AUC for ROC in the training cohort was 0.781, 0.771, and 0.791 at 1, 2, and 3 years CSS, respectively. Calibration plots showed good consistency between actual observations and the 1-, 2-, and 3-year CSS predicted by the nomogram. The 1-, 2-, and 3-year NRI were 0.77, 0.46, and 0.48, respectively. The 1-, 2-, and 3-year IDI values were 0.16, 0.15, and 0.12 (P < 0.001), respectively. DCA curves in both the training and validation cohorts demonstrated that the nomogram showed better predicted 1-, 2-, and 3-year CSS probabilities than AJCC criteria.ConclusionsThis study established a practical nomogram for predicting CSS in patients with advanced HCC and a risk stratification system that provided an applicable tool for clinical management.

Publisher

Frontiers Media SA

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3