Deep Learning Models for Predicting the Survival of Patients with Hepatocellular Carcinoma Based on a Surveillance, Epidemiology, and End Results (SEER) Database Analysis

Author:

Wang Shoucheng1,Shao Mingyi2,Fu Yu2,Zhao Ruixia2,Xing Yunfei2,Zhang Liujie1,Xu Yang1

Affiliation:

1. Henan University of Traditional Chinese Medicine

2. First Affiliated Hospital of Henan University of Traditional Chinese Medicine

Abstract

Abstract

Background This study aims to develop and validate a predictive model for Hepatocellular Carcinoma (HCC) patients using deep learning algorithms and to explore its clinical applicability. Methods HCC patients pathologically diagnosed between January 2011 and December 2015 in the SEER (Surveillance, Epidemiology, and End Results) database of the National Cancer Institute of the United States were selected as study subjects. We utilized two deep learning-based algorithms (DeepSurv and Neural Multi-Task Logistic Regression [NMTLR]) and a machine learning-based algorithm (Random Survival Forest [RSF]) for model training. A multivariable Cox Proportional Hazards (CoxPH) model was also constructed for comparison. The dataset was randomly divided into a training set and a test set in a 7:3 ratio. The training dataset underwent hyperparameter tuning through 1000 iterations of random search and 5-fold cross-validation. Model performance was assessed using the concordance index (C-index), Brier score, and Integrated Brier Score (IBS). The accuracy of predicting 1-year, 3-year, and 5-year survival rates was evaluated using Receiver Operating Characteristic (ROC) curves, calibration plots, and Area Under the Curve (AUC). The primary outcomes were the 1-year, 3-year, and 5-year overall survival rates. Models were developed using DeepSurv, NMTLR, RSF, and Cox Proportional Hazards regression. Model differentiation was evaluated using the C-index, calibration with concordance plots, and risk stratification capability with the log-rank test. Results The study included 2,197 HCC patients, randomly divided into a training cohort (70%, n = 1,537) and a testing cohort (30%, n = 660). Clinical characteristics between the two cohorts showed no significant statistical difference (p > 0.05). The deep learning models outperformed both RSF and CoxPH models, with C-indices of 0.735 (NMTLR) and 0.731 (DeepSurv) in the test dataset. The NMTLR model provided more accurate and better-calibrated survival estimates for predicting 1-year, 3-year, and 5-year survival rates (AUC: 0.803–0.824). We deployed the NMTLR model as a web application for clinical practice. Conclusion The predictive model developed using the deep learning algorithm NMTLR demonstrated excellent performance in prognostication for Primary Hepatocellular Carcinoma.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3