Machine-learning-based prediction of the effectiveness of the delivered dose by exhale-gated radiotherapy for locally advanced lung cancer: The additional value of geometric over dosimetric parameters alone

Author:

Guberina Nika,Pöttgen Christoph,Santiago Alina,Levegrün Sabine,Qamhiyeh Sima,Ringbaek Toke Printz,Guberina Maja,Lübcke Wolfgang,Indenkämpen Frank,Stuschke Martin

Abstract

PurposeThis study aimed to assess interfraction stability of the delivered dose distribution by exhale-gated volumetric modulated arc therapy (VMAT) or intensity-modulated arc therapy (IMAT) for lung cancer and to determine dominant prognostic dosimetric and geometric factors.MethodsClinical target volume (CTVPlan) from the planning CT was deformed to the exhale-gated daily CBCT scans to determine CTVi, treated by the respective dose fraction. The equivalent uniform dose of the CTVi was determined by the power law (gEUDi) and cell survival model (EUDiSF) as effectiveness measure for the delivered dose distribution. The following prognostic factors were analyzed: (I) minimum dose within the CTVi (Dmin_i), (II) Hausdorff distance (HDDi) between CTVi and CTVPlan, (III) doses and deformations at the point in CTVPlan at which the global minimum dose over all fractions per patient occurs (PDmin_global_i), and (IV) deformations at the point over all CTVi margins per patient with the largest Hausdorff distance (HDPworst). Prognostic value and generalizability of the prognostic factors were examined using cross-validated random forest or multilayer perceptron neural network (MLP) classifiers. Dose accumulation was performed using back deformation of the dose distribution from CTVi to CTVPlan.ResultsAltogether, 218 dose fractions (10 patients) were evaluated. There was a significant interpatient heterogeneity between the distributions of the normalized gEUDi values (p<0.0001, Kruskal–Wallis tests). Accumulated gEUD over all fractions per patient was 1.004–1.023 times of the prescribed dose. Accumulation led to tolerance of ~20% of fractions with gEUDi<93% of the prescribed dose. Normalized Dmin >60% was associated with predicted gEUD values above 95%. Dmin had the highest importance for predicting the gEUD over all analyzed prognostic parameters by out-of-bag loss reduction using the random forest procedure. Cross-validated random forest classifier based on Dmin as the sole input had the largest Pearson correlation coefficient (R=0.897) in comparison to classifiers using additional input variables. The neural network performed better than the random forest classifier, and the gEUD values predicted by the MLP classifier with Dmin as the sole input were correlated with the gEUD values characterized by R=0.933 (95% CI, 0.913–0.948). The performance of the full MLP model with all geometric input parameters was slightly better (R=0.952) than that based on Dmin (p=0.0034, Z-test).ConclusionAccumulated dose distributions over the treatment series were robust against interfraction CTV deformations using exhale gating and online image guidance. Dmin was the most important parameter for gEUD prediction for a single fraction. All other parameters did not lead to a markedly improved generalizable prediction. Dosimetric information, especially location and value of Dmin within the CTVi, are vital information for image-guided radiation treatment.

Publisher

Frontiers Media SA

Subject

Cancer Research,Oncology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3