Fractionation versus Adaptation for Compensation of Target Volume Changes during Online Adaptive Radiotherapy for Bladder Cancer: Answers from a Prospective Registry

Author:

Pöttgen Christoph1ORCID,Hoffmann Christian1ORCID,Gauler Thomas1,Guberina Maja1ORCID,Guberina Nika1,Ringbaek Toke1,Santiago Garcia Alina1,Krafft Ulrich2,Hadaschik Boris23,Khouya Aymane1,Stuschke Martin13

Affiliation:

1. Department of Radiotherapy, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany

2. Department of Urology, University of Duisburg-Essen, 45147 Essen, Germany

3. German Cancer Consortium (DKTK), Partner Site University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany

Abstract

Online adaptive radiotherapy (ART) allows adaptation of the dose distribution to the anatomy captured by with pre-adaptation imaging. ART is time-consuming, and thus intra-fractional deformations can occur. This prospective registry study analyzed the effects of intra-fraction deformations of clinical target volume (CTV) on the equivalent uniform dose (EUDCTV) of focal bladder cancer radiotherapy. Using margins of 5–10 mm around CTV on pre-adaptation imaging, intra-fraction CTV-deformations found in a second imaging study reduced the 10th percentile of EUDCTV values per fraction from 101.1% to 63.2% of the prescribed dose. Dose accumulation across fractions of a series was determined with deformable-image registration and worst-case dose accumulation that maximizes the correlation of cold spots. A strong fractionation effect was demonstrated—the EUDCTV was above 95% and 92.5% as determined by the two abovementioned accumulation methods, respectively, for all series of dose fractions. A comparison of both methods showed that the fractionation effect caused the EUDCTV of a series to be insensitive to EUDCTV-declines per dose fraction, and this could be explained by the small size and spatial variations of cold spots. Therefore, ART for each dose fraction is unnecessary, and selective ART for fractions with large inter-fractional deformations alone is sufficient for maintaining a high EUDCTV for a radiotherapy series.

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3