Paulownia trees as a sustainable solution for CO2 mitigation: assessing progress toward 2050 climate goals

Author:

Ghazzawy Hesham S.,Bakr Ahmed,Mansour Abdallah Tageldein,Ashour Mohamed

Abstract

Due to the progressive climate change on our planet, scientists are interested in solving this issue since it threatens not only certain regions or countries but also the world’s ecosystems and economies. Therefore, minimizing carbon dioxide (CO2) emissions and reducing atmospheric levels are global priorities. Thus, it is necessary at this moment to develop an appropriate approach to reduce or stabilize CO2 levels in the atmosphere. However, CO2 capture projects are long-term, low-profitable, and high-risk environmental projects. Consequently, it is necessary to find an appropriate and sustainable CO2 capture approach that is efficient in reducing atmospheric CO2 levels while having a safe impact on the environment. Although carbon (C) is the key basic component used to produce biological compounds by photosynthetic organisms in terrestrial plants, the C pathway is a key factor affecting the capture of CO2 by photosynthetic organisms. Among photosynthetic organisms, Paulownia, a multipurpose tree, is popular around the world for its timber and its potential role in CO2 sequestration. Paulownia spp. belongs to the Paulowniaceae family and comprises a group of trees. These trees are primarily found in southeastern Asia, particularly in China, and have been intentionally grown for more than two millennia due to their ornamental, cultural, and medicinal value. The number of Paulownia species varies depending on taxonomic classification, ranging from 6 to 17. Among them, Paulownia tomentosa, Paulownia elongata, Paulownia fortunei, and Paulownia catalpifolia are the most widely recognized and favored species. The present review provides a comprehensive technical-economic scenario for the capture of one million tons of CO2 by Paulownia trees (as a terrestrial plant model, grown on 2,400 ha−1). P. tomentosa can be utilized in agroforestry systems to mitigate greenhouse gas (GHG) emissions within urban cities and emphasize the carbon storage potential of agroforestry. In conclusion, Paulownia trees as an environmental mass project showed great encouragement to investors and governments to expand these types of projects to achieve global climate goals by 2050.

Publisher

Frontiers Media SA

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3