Assessing Hydrological Alteration Caused by Climate Change and Reservoir Operations in the San Joaquin River Basin, California

Author:

Maskey Mahesh L.,Facincani Dourado Gustavo,Rallings Anna M.,Rheinheimer David E.,Medellín-Azuara Josué,Viers Joshua H.

Abstract

Freshwater aquatic ecosystems are highly sensitive to flow regime alteration caused by anthropogenic activities, including river regulation and atmospheric warming-induced climate change. Either climate change or reservoir operations are among the main drivers of changes in the flow regime of rivers globally. Using modeled unregulated and simulated regulated streamflow under historical and future climate scenarios, this study evaluated potential changes to the flow regime due to climate change and reservoir operations for the major tributaries of the San Joaquin River Basin, California United States. We selected a set of Indicators of Hydrologic Alteration (IHA) to evaluate historical and projected future trends of streamflow dynamics: rise and fall rates, durations and counts of low and high pulses, and the magnitude of extremes. Results show that most indicators have pronounced departures from baseline conditions under anticipated future climate conditions given existing reservoir operations. For example, the high pulse count decreases during regulated flow conditions compared to increased frequency under unregulated flow conditions. Finally, we observed a higher degree of flow regime alteration due to reservoir operations than climate change. The degree of alteration ranges from 1.0 to 9.0% across the basin among all future climate scenarios, while reservoir operations alter the flow regime with a degree of alteration from 8.0 to 25%. This study extends multi-dimensional hydrologic alteration analysis to inform climate adaptation strategies in managed river systems.

Funder

U.S. Department of Energy

California Energy Commission

Publisher

Frontiers Media SA

Subject

General Environmental Science

Reference60 articles.

1. Regulation of Snow-Fed Rivers Affects Flow Regimes More Than Climate Change;Arheimer;Nat. Commun.,2017

2. Trends of Indicators of Hydrological Alterations;Barbalić;Građevinar,2014

3. Livneh Data Clipped to California-Nevada BerkeleyU. C. 2017

4. Basic Principles and Ecological Consequences of Altered Flow Regimes for Aquatic Biodiversity;Bunn;Environ. Manage.,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3