Reliability and resilience of environmental flows under uncertainty: reconsidering water year types and inconsistent flow requirements in California

Author:

Facincani Dourado GustavoORCID,Viers Joshua HORCID

Abstract

Abstract Environmental water allocation in California is a complex legal process involving various government agencies and stakeholders. E-flow requirements can be based on annual runoff typologies called water year types (WYTs), which dictate water volume, timing, and duration. In this study, we examined hydropower licensing documents of the major water and power projects in the Central Sierra Nevada to catalog e-flow requirements by WYT. In this study case, we identify how WYT classification systems and categories vary across and within different basins. Additionally, we assessed the impacts of climate change on hydrology, the frequency of WYTs identified, and the reliability and resilience of e-flows using future projections (2031–2060) of 10 Global Circulation Models (GCMs). We then propose a potential adaptation strategy using a 30 year moving percentiles approach to recalculate WYTs. We identified eight WYT classifications systems were identified, and their WYT distributions statistically significantly changes across all GCMs, even though most GCMs indicate no statistically significant change in hydrology. Disparities in future impacts are observed among and within hydropower projects, with some river reaches showing negative impacts on reliability and resilience. The adaptation strategy can generally boost resilience and improve reliability, but simply updating existing WYT thresholds without flexible regulatory frameworks reconsidering WYTs and e-flows thresholds, may not yield substantial improvements. Challenges in managing e-flows in California within regulatory and hydroclimatic contexts are intricate due to the lack of standardized approaches, leading to inconsistencies and potential conflicts among stakeholders, that will likely be exacerbated by climate change. Thus, we emphasize that targeted, site-specific, and adaptive management strategies are crucial, besides the need for a harmonized and consistent approach to defining and applying WYT categories and methods and/or e-flow assessments.

Funder

U.S. Department of Agriculture

U.S. Department of Energy U.S.-China Clean Energy Research Center - Water Energy Technologies

California Energy Commission

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3