A gradient boosting machine-based framework for electricity energy knowledge discovery

Author:

Xie Bingbing,Zhu Chenliang,Zhao Liang,Zhang Jun

Abstract

Knowledge discovery in databases (KDD) has an important effect on various fields with the development of information science. Electricity energy forecasting (EEF), a primary application of KDD, aims to explore the inner potential rule of electrical data for the purpose to serve electricity-related organizations or groups. Meanwhile, the advent of the information society attracts more and more scholars to pay attention to EEF. The existing methods for EEF focus on using high-techs to improve the experimental results but fail to construct an applicable electricity energy KDD framework. To complement the research gap, our study aims to propose a gradient boosting machine-based KDD framework for electricity energy prediction and enrich knowledge discovery applications. To be specific, we draw on the traditional knowledge discovery process and techniques to make the framework reliable and extensible. Additionally, we leverage Gradient Boosting Machine (GBM) to improve the efficiency and accuracy of our approach. We also devise three metrics for the evaluation of the proposed framework including R-square (R2), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE). Besides, we collect the electricity energy consumption (EEC) as well as meteorological data from 2013 to 2016 in New York state and take the EEC prediction of New York State as an example. Finally, we conduct extensive experiments to verify the superior performance of our framework and the results show that our model achieves outstanding results for the three metrics (around 0.87 for R2, 60.15 for MAE, and 4.79 for MAPE). Compared with real value and the official prediction model, our approach also has a remarkable prediction ability. Therefore, we find that the proposed framework is feasible and reliable for EEF and could provide practical references for other types of energy KDD.

Publisher

Frontiers Media SA

Subject

General Environmental Science

Reference49 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3