Modeling Residential Energy Consumption Patterns with Machine Learning Methods Based on a Case Study in Brazil

Author:

Henriques Lucas12ORCID,Castro Cecilia1ORCID,Prata Felipe2ORCID,Leiva Víctor3ORCID,Venegas René4ORCID

Affiliation:

1. Centre of Mathematics, Universidade do Minho, 4710-057 Braga, Portugal

2. Instituto Federal de Alagoas, Maceió 57035-350, Alagoas, Brazil

3. School of Industrial Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, Chile

4. Doctorate Program in Intelligent Industry, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, Chile

Abstract

Developing efficient energy conservation and strategies is relevant in the context of climate change and rising energy demands. The objective of this study is to model and predict the electrical power consumption patterns in Brazilian households, considering the thresholds for energy use. Our methodology utilizes advanced machine learning methods, such as agglomerative hierarchical clustering, k-means clustering, and self-organizing maps, to identify such patterns. Gradient boosting, chosen for its robustness and accuracy, is used as a benchmark to evaluate the performance of these methods. Our methodology reveals consumption patterns from the perspectives of both users and energy providers, assessing the corresponding effectiveness according to stakeholder needs. Consequently, the methodology provides a comprehensive empirical framework that supports strategic decision making in the management of energy consumption. Our findings demonstrate that k-means clustering outperforms other methods, offering a more precise classification of consumption patterns. This finding aids in the development of targeted energy policies and enhances resource management strategies. The present research shows the applicability of advanced analytical methods in specific contexts, showing their potential to shape future energy policies and practices.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3