Substantial Increase in Heavy Precipitation Events Preceded by Moist Heatwaves Over China During 1961–2019

Author:

Li Chenxi,Min Ruiying,Gu Xihui,Gulakhmadov Aminjon,Luo Sijia,Liu Ruihan,Slater Louise J.,Xie Fenghua,Kong Dongdong,Liu Jianyu,Li Yanan

Abstract

Both moist heatwaves (HWs) and heavy precipitation events (HP) have increased in both frequency and magnitude over China in recent decades. However, the relationship between HW and HP and changes in the lagged coincidence of events (i.e., the occurrence of an HP event several days after an HW event, noted HWHP) remain unknown. We show here that HWHP events account for nearly one-third of HP events over China in summer, with high values in North China, Northeast China, and the East arid zone. HWHP events assessed using the heat index and the wet-bulb temperature methods increased by 45.25 and 23.97% from 1961 to 2019, respectively. These concurrent HWHP events tend to be spatially clustered, and the areas affected simultaneously have grown significantly. The increase in HW is the major driver of these changes in HWHP events, except in the western arid zone and North China. Our findings provide an understanding of the spatiotemporal changes in HWHP events over China and their implications for disaster mitigation.

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3