A New Method to Identify the Maximum Time Interval between Individual Events in Compound Rainstorm and Heatwave Events

Author:

Zhang Junlin,Xu Wei,Qiao Yu,Liao Xinli,Meng Chenna,Han Qinmei

Abstract

AbstractGrowing evidence indicates that extreme heat and rain may occur in succession within short time periods and cause greater impacts than individual events separated in time and space. Therefore, many studies have examined the impacts of compound hazard events on the social-ecological system at various scales. The definition of compound events is fundamental for such research. However, there are no existing studies that support the determination of time interval between individual events of a compound rainstorm and heatwave (CRH) event, which consists of two or more potentially qualifying component heatwave and rainstorm events. To address the deficiency in defining what individual events can constitute a CRH event, this study proposed a novel method to determine the maximum time interval for CRH events through the change in CRH event frequency with increasing time interval between individual events, using southern China as a case study. The results show that the threshold identified by the proposed method is reasonable. For more than 90% of the meteorological stations, the frequency of CRH events has reached a maximum when the time interval is less than or equal to the threshold. This study can aid in time interval selection, which is an important step for subsequent study of CRH events.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3