Climate change impact assessment on a tropical river resilience using the Streeter-Phelps dissolved oxygen model

Author:

Mendivil-García Kimberly,Amabilis-Sosa Leonel E.,Salinas-Juárez María Guadalupe,Pat-Espadas Aurora,Rodríguez-Mata Abraham E.,Figueroa-Pérez Marely G.,Roé-Sosa Adriana

Abstract

This paper provides a technical analysis of a river’s current and future resilience in a watershed with intensive agricultural and fishing activities. The study area was the last section of the Culiacan River corresponding to the river mouth over a lagoon system. Dissolved oxygen modeling was performed using the Streeter-Phelps model to evaluate the river self-depuration capability using Biochemical Oxygen Demand, dissolved oxygen, streamflow, and water temperature data from 2013 to 2020. Fieldwork was carried out to establish the geomorphological characteristics of the river by determining stream velocity, width, and depth and the location of nine sources of pollution on the river. The modeling was performed for three groups of months with different temperatures, identified by hierarchical cluster analysis. Estimates were made for future scenarios, assessing the effect of climate change on the Culiacan River’s self-depuration capability. The results showed that most of the year, the degradation rate of the system results in rapid assimilation of organic matter. However, the modeling indicates that the river would lose its resilience capability under climate change. Thus, it is essential to implement wastewater treatment systems to reduce the environmental impact on the aquatic ecosystem in the river and the lagoon system.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3