Optimization of the water quality monitoring network in a basin with intensive agriculture using artificial intelligence algorithms

Author:

Mendivil-García Kimberly1,Medina José Luis2,Rodríguez-Rangel Héctor2,Roé-Sosa Adriana3,Amábilis-Sosa Leonel Ernesto1ORCID

Affiliation:

1. a División de Estudios de Posgrado e Investigación, CONACYT-Tecnológico Nacional de México/IT de Culiacán, Av. Juan de Dios Batiz, No. 310, 80220, Culiacán, Sinaloa, México

2. b División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/IT de Culiacán, Av. Juan de Dios Batiz, No. 310, 80220, Culiacán, Sinaloa, México

3. c Universidad Tecnológica de Culiacán, Carretera Imala km 2, C.P. 80014, Culiacán, Sinaloa, México

Abstract

Abstract This research applies artificial intelligence algorithms for optimizing the water quality monitoring network in a representative basin with intensive agricultural and livestock activities. This study used the water quality database provided by the National Water Commission (CONAGUA). Bi-monthly monitoring was registered from 2013 to 2020 for 23 water quality parameters in 23 sampling locations in tributaries and the mainstream river. Therefore, it was necessary to apply principal component analysis to reduce the dimensionality of the data and thus identify the parameters that contribute most to the variation in the water quality. This artificial intelligence algorithm promoted the ease of clustering sampling sites with similar water quality characteristics by reducing the number of variables involved in the database. The reduction highlighted nutrients (TN and TP), parameters related to dissolved organic matter (NH3-N and TOC), and pathogens such as fecal coliforms. The similarity of sampling sites was determined through hierarchical clustering using the Euclidean distance as a measure of dissimilarity and the Ward method as a grouping method. As a result, nine clusters were obtained for the rainy and dry seasons, reducing approximately 50% of the sampling sites and generating an optimized network of 11 sampling sites.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

IWA Publishing

Subject

Water Science and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3