Modeling future land use and land cover under different scenarios using patch-generating land use simulation model. A case study of Ndola district

Author:

Mutale Bwalya,Qiang Fan

Abstract

Accurate predictions of changes in Land-use and Land-cover (LULC) are crucial in climate modeling, providing valuable insights into the possible effects of land-use alterations on Earth’s intricate system. This study focuses on forecasting and examining future LULC changes in the Ndola district from 2022 to 2042, considering three scenarios: Traditional mode (TM), Ecological protection (EP), and Economic Development (ED). TM reflects past land use changes, EP prioritizes environmental conservation, and ED emphasizes economic growth and urbanization. Using the patch-generating land use simulation (PLUS) model, we achieved precise predictions of LULC changes in Ndola district. The model, which combines LEAS rule-extraction with a CA model using CARS, addresses limitations of previous models like CLUE-S, CA-Markov, and FLUS by accurately simulating scattered LULC patterns and the mutual attraction and evolution of open space and urban land under different policies. Using LULC data from the livingatlas platform for the base period (2017–2022), the model demonstrated a Kappa coefficient of 78% and a FoM value of 0.34. Key findings indicate significant trends, such as reductions in forest and agricultural lands in the TM and ED scenarios, with rangeland expanding consistently across all scenarios, particularly in the ED scenario. The decline in agricultural and forest lands raises concerns about household food security, habitat fragmentation, biodiversity loss, and diminished ecosystem services. Urban sprawl onto other land uses could further strain urban infrastructure and public services. Future research should incorporate uncertainty analysis methods such as fuzzy logic or Bayesian methodologies to quantify and differentiate uncertainties related to modeling simulations.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3