The branching architecture of artemisia ordosica and its resistance to wind erosion

Author:

Qu Zhiqiang,Li Zhiguo,Hu Linxi,Liu Lianyou,Hu Xia,Zhang Guoming,Lv Yanli,Guo Lanlan,Yang Yanyan,Yang Ziqiong,Han Guodong

Abstract

Different branching architectures reflect the adaptation strategies of different plants and affect their resistance to wind erosion. This study presents field-based observations that demonstrate the relationship between the branching architecture of Artemisia ordosica and its resistance to wind erosion. This species is the dominant plant species in the semi-fixed and fixed dunes of the Mu Us Sandy land. The overall bifurcation ratio (OBR) of semi-fixed sandy land is higher than the fixed sandy land 0.27; Similarly, the total stepwise bifurcation ratio (SBR) is higher than the fixed sandy land about 0.74; The length of first levels of total branches is also higher than 8.07. The aerodynamic roughness was greater than the A. ordosica community in the fixed and semi-fixed sandy land than in the bare sandy land. The airflow fields in the cross-wind direction were strongly affected by the windward shape of the plants, which became gradually narrower from the base to the top, while in the leeward direction, the wind speed at different heights behind the plant returned to the incoming airflow velocity. The result confirms that the influence of the windward shape of the plant on the surrounding airflow field is much larger than the influence of plant thickness, porosity or other factors.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

General Environmental Science

Reference21 articles.

1. The study on biomass of tamarix;Anwar;Environ. Prot. Xinjiang,1997

2. Meristems, metamers and modules and the development of shoot and root systems;Barlow;Botanical J. Linn. Soc.,1989

3. Aerodynamic roughness of fixed sandy beds;Dong;J. Geophys. Res.,2001

4. Classification of the branching architectures of the desert plants in minqin county;He;Acta Bot. boreal.–occident. Sin.,2005

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3