Assessing the Relationship between Ecological Water Demand of Haloxlon ammodendron and Its Wind Erosion Prevention Effect

Author:

Yang Haimei1,Liang Hongbang1,Liu Xingshuang1,Li Mingsi1

Affiliation:

1. College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832003, China

Abstract

Desert vegetation in the outer transition zone of an arid oasis serves as a protective barrier against wind and sand, safeguarding the oasis ecosystem. However, intensive agricultural water usage within the oasis has led to water depletion, posing a threat to the survival and growth of desert vegetation, as well as the associated increase in wind and sand phenomena. To ensure the sustainable distribution of water resources and maintain the stability of the oasis peripheral ecosystem, this study aimed to investigate the relationship between the ecological water demand of desert vegetation and its effectiveness in preventing wind erosion. Through a combination of field sample tests, field pit tests, and data analysis, this research focused on Haloxlon ammodendron, the most prevalent species on the oasis periphery, to explore the intricate relationship between its ecological water demand and resistance to wind erosion. The results showed that medium-vegetation-coverage soils exhibited a higher soil moisture content (7.02%) compared to high-vegetation-coverage soils (1.57%) and low-vegetation-coverage soils (3.41%). As the soil water content decreased, the growth rate of H. ammodendron’s plant height, new branches, and crown width decelerated. The ecological water requirement of H. ammodendron during its growth period was 70.95 mm under medium-vegetation-coverage conditions, exhibiting a significant increase of 14.6% and 12.3% compared to high- and low-vegetation-coverage conditions, respectively. Meanwhile, H. ammodendron exhibits remarkable wind erosion prevention effects in moderate coverage conditions, resulting in a significant reduction in surface sand collection and sand transport by 53.15% and 51.29%, respectively, compared to low vegetation coverage; however, no significant difference was observed when compared to high vegetation coverage. The SEM model results revealed that soil water content had an indirect effect on sand transport (R2 = 0.90) and sand collection (R2 = 0.96) through three pathways of action, namely: volatile water content–crown growth rate–wind speed–sediment discharge; volatile water content–plant height growth rate–vegetation coverage–wind speed–sediment discharge; and volatile water content–plant height growth rate–vegetation coverage–sediment accumulation. This study provides valuable insights for the scientific formulation and implementation of strategies aimed at protecting desert vegetation.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3