Vegetation Dynamics and its Response to Climate Change in the Yellow River Basin, China

Author:

Zhan Cun,Liang Chuan,Zhao Lu,Jiang Shouzheng,Niu Kaijie,Zhang Yaling,Cheng Long

Abstract

As an important ecological corridor, the Yellow River basin (YRB) is crucial for the eco-environmental security and sustainable socio-economic development of China. Systematic studies on the spatiotemporal evolution of vegetation cover and the response of vegetation dynamics to climate change in the YRB at different timescales are lacking. Utilizing a long-term remotely sensed Normalized Difference Vegetation Index (NDVI) and gridded climate dataset, we examined the spatiotemporal variability of vegetation cover and its response to climate variables in the Yellow River Basin (YRB) at multiple timescales by using the Mann-Kendall test, rescaled range analysis, and partial correlation analysis. Results indicated that the annual NDVI in the YRB decreased spatially from southeast to northwest, and peaked in August. From 1982 to 2015, the YRB experienced greening during the annual, growing season and spring, with statistically significant NDVI increases (p < 0.05) recorded in over 55% of the vegetated areas. NDVI trends should be expected to persist in the future, as evidenced by the Hurst index exceeding 0.5 in over 85% areas of the YRB. Temperature and precipitation determined the spatiotemporal pattern of vegetation cover in the YRB, and vegetation dynamics response to climatic variations varied among seasons and climatic zones. In contrast to other seasons, spring NDVI was significantly correlated with temperature, whereas winter vegetation was more vulnerable to suppression by increased precipitation. Vegetation growth was more susceptible to precipitation than to temperature in the arid and semiarid zones, while temperature dominated vegetation dynamics in the semi-humid zone, and the sunshine duration was essential for vegetation growth in high-altitude regions. The study contributes to a deeper understanding of the interrelationship between vegetation dynamics and climate change in the YRB and provides useful suggestions for the regional ecological conservation in the context of global warming.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3