Spatiotemporal Variation of Vegetation on the Qinghai–Tibet Plateau and the Influence of Climatic Factors and Human Activities on Vegetation Trend (2000–2019)

Author:

Chen Junhan,Yan FengORCID,Lu Qi

Abstract

Vegetation is the terrestrial ecosystem component most sensitive to climate change. The Qinghai–Tibet Plateau (QTP), characterized by a cold climate and vulnerable ecosystems, has experienced significant warming in previous decades. Identifying the variation in vegetation coverage and elucidating its main driving factors are critical for ecological protection on the QTP. In this study, MOD13A2 Normalized Difference Vegetation Index (NDVI) data in the growing season (May to September) was used to represent QTP vegetation coverage during 2000–2019. The univariate linear regression, partial correlation analysis, residual analysis, and the Hurst exponent were used to detect the vegetation spatiotemporal dynamic, analyze the relationship between the vegetation and main driving factors, and predict the future vegetation dynamic. The growing season NDVI (GNDVI) of the QTP showed an extremely significant rate of increase (0.0011/a) during the study period, and 79.29% of the vegetated areas showed a greening trend. Over the past 20 years, the northeast, mid-east, and western edges of the plateau have been cooling and wetting, while the southwest, mid-west, and southeast have been warming and drying. Different climatic conditions lead to spatial differences in the response of plateau vegetation to climatic factors with generally 1–4 months lag time. The vegetation in the north of the plateau was mainly positively correlated with moisture, and negatively correlated with temperature, while the southern part showed positive correlation with temperature and negative correlation with moisture. Due to the enhancement of cooling and wetting trend in the last decade (2010–2019), especially in the south of the plateau, the greening trend of the plateau vegetation slowed down appreciably and even degraded in some areas. Human activities were mainly concentrated in the eastern part of the plateau—and its positive effect on vegetation was gradually increasing in most areas during study period, especially in the northeastern part. However, vegetation degradation caused by human activities in the southeast of the plateau should not be ignored. The future vegetation dynamic based on the Hurst exponent showed that the plateau faces a higher risk of vegetation degradation, which deserves more attention. This study explored the effect of climatic factors and human activities on vegetation of the QTP, thereby providing some guidance for the study of vegetation dynamic in the alpine areas.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3