End-to-end system for monitoring the state of rivers using a drone

Author:

Prokop Katarzyna,Połap Karolina,Włodarczyk-Sielicka Marta,Jaszcz Antoni

Abstract

Automatic data analysis systems in the Internet of Things are a key element. One such case is the use of drones to monitor rivers, which are quite often located around built-up areas. This is an important element for the analysis of urban areas that are exposed to various environmental challenges such as pollution and animal habitats. Data analysis allows the detection of anomalies in the state of rivers, reducing the risk of ecological disasters or even floods. Additionally, constant control of areas enables analysis of the impact of urbanization on a given area as well as environmental protection. In this paper, we propose an end-to-end system, where the user performs measurements with a drone and the result is a segmentation mask from the U-Net network, but improved by image processing algorithms. The system is based on performing segmentation with a neural network, imposing the obtained mask on the image that was previously subjected to edge detection. All pixels under the mask are analyzed by the clustering method in terms of belonging to a river or bank. In addition, when there are other measurements from the same area, they are used to compare and analyze changes. The proposed system architecture is based on the automation of activities due to the combination of various graphics processing methods. Moreover, the method allows for obtaining more accurate segmentation results than classic methods. The proposition was tested on data gathered near river areas in southern Poland to show the possibilities and effectiveness of the system. Proposed methodology reached 0.8524 of Dice coefficient using VGG16 as encoder.

Funder

Narodowe Centrum Badań i Rozwoju

Publisher

Frontiers Media SA

Subject

General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dual-Encoding Y-ResNet for generating a lens flare effect in images;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

2. Image segmentation enhanced by heuristic assistance for retinal vessels case;2024 IEEE Congress on Evolutionary Computation (CEC);2024-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3