Freeze-thaw cycles alter soil hydro-physical properties and dissolved organic carbon release from peat

Author:

Liu Haojie,Rezanezhad Fereidoun,Zak Dominik,Li Xiujun,Lennartz Bernd

Abstract

The ongoing climate warming is likely to increase the frequency of freeze-thaw cycles (FTCs) in cold-temperate peatland regions. Despite the importance of soil hydro-physical properties in water and carbon cycling in peatlands, the impacts of FTCs on peat properties as well as carbon sequestration and release remain poorly understood. In this study, we collected undisturbed topsoil samples from two drained lowland fen peatlands to investigate the impact of FTCs on hydro-physical properties as well as dissolved organic carbon (DOC) fluxes from peat. The soil samples were subject to five freeze-thaw treatments, including a zero, one, three, five, ten cycles (FTC0, FTC1, FTC3, FTC5, and FTC10, respectively). Each FTC was composed of 24 h of freezing (−5°C) and 24 h of thawing (5°C) and the soil moisture content during the freeze-thaw experiment was adjusted to field capacity. The results showed that the FTCs substantially altered the saturated hydraulic conductivity (Ks) of peat. For peat samples with low initial Ks values (e.g., < 0.2 × 10−5 m s−1), Ks increased after FTCs. In contrast, the Ks of peat decreased after freeze-thaw, if the initial Ks was comparably high (e.g., > 0.8 × 10−5 m s−1). Overall, the average Ks values of peatlands decreased after FTCs. The reduction in Ks values can be explained by the changes in macroporosity. The DOC experiment results revealed that the FTCs could increase DOC concentrations in leachate, but the DOC fluxes decreased mainly because of a reduction in water flow rate as well as Ks. In conclusion, soil hydraulic properties of peat (e.g., Ks) are affected by freezing and thawing. The dynamics of soil hydraulic properties need to be explicitly addressed in the quantification and modelling of the water flux and DOC release from peatlands.

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3