Controls on Saturated Hydraulic Conductivity in a Degrading Permafrost Peatland Complex

Author:

Fewster Richard E.12ORCID,Morris Paul J.1ORCID,Swindles Graeme T.34,Baird Andy J.1ORCID,Turner T. Edward5,Ivanovic Ruza F.6ORCID

Affiliation:

1. School of Geography University of Leeds Leeds UK

2. Department of Geography University of Exeter Exeter UK

3. Geography, School of Natural and Built Environment Queen's University Belfast Belfast UK

4. Ottawa‐Carleton Geoscience Centre and Department of Earth Sciences Carleton University Ottawa ON Canada

5. Forestry and Land Scotland Dumfries UK

6. School of Earth and Environment University of Leeds Leeds UK

Abstract

AbstractPermafrost peatlands are vulnerable to rapid structural changes under climatic warming, including vertical collapse. Peatland water budgets, and therefore peat hydraulic properties, are important determinants of vegetation and carbon fluxes. Measurements of hydraulic properties exist for only a limited number of permafrost peatland locations, primarily concentrated in North America. The impacts of thaw‐induced collapse upon properties such as horizontal saturated hydraulic conductivity (Kh), and thus lateral drainage, remain poorly understood. We made laboratory determinations of Kh from 82 peat samples from a degrading Swedish palsa mire. We fitted a linear mixed‐effects model (LMM) to establish the controls on Kh, which declined strongly with increasing depth, humification and dry bulk density. Depth exerted the strongest control on Kh in our LMM, which demonstrated strong predictive performance (r2 = 0.605). Humification and dry bulk density were influential predictors, but the high collinearity of these two variables meant only one could be included reliably in our LMM. Surprisingly, peat Kh did not differ significantly between desiccating and collapsed palsas. We compared our site‐specific LMM to an existing, multi‐site model, fitted primarily to boreal and temperate peatlands. The multi‐site model made less skillful predictions (r2 = 0.528) than our site‐specific model, possibly due to latitudinal differences in peat compaction, floristic composition and climate. Nonetheless, low bias means the multi‐site model may still be useful for estimating peat Kh at high latitudes. Permafrost peatlands remain underrepresented in multi‐site models of peat hydraulic properties, and measurements such as ours could be used to improve future iterations.

Funder

Natural Environment Research Council

Quaternary Research Association

Leverhulme Trust

Publisher

American Geophysical Union (AGU)

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3