A Deep Learning–Based Approach for Moving Vehicle Counting and Short-Term Traffic Prediction From Video Images

Author:

Zheng Ye,Li Xiaoming,Xu LiuChang,Wen Nu

Abstract

The intelligent transportation system (ITS) is one of the effective solutions to the problem of urban traffic congestion, and it is also one of the important topics of smart city construction. One particular application is the traffic monitoring and flow prediction. However, there are still challenges regarding both aspects. On the one hand, the current traffic monitoring relies heavily on the single object detection method that cannot achieve accurate statistics of moving target counting and, meanwhile, has limited speed advantage; on the other hand, the existing traffic flow prediction models rarely consider different weather conditions. Therefore, the present article attempts to propose a packaged solution, which combines a new target tracking and moving vehicle counting method and an improved long short-term memory (LSTM) network for traffic flow forecast with weather conditions. More specifically, the DCN V2 convolution kernel and MultiNetV3 framework are used to replace YOLOv4’s conventional convolution kernel and backbone network to realize multi-target tracking and counting, respectively. Subsequently, combined with the temporal characteristics of historical traffic flow, this article introduces weather conditions into the LSTM network and realizes the short-term prediction of traffic flow at the road junction level. This study carries out a series of experiments using the real traffic video data with a 2-month time span at a popular road junction in the downtown of Shenzhen, China. The results suggest that the proposed algorithms outperform the previous methods in terms of the 10% higher accuracy of target detection tracking and about a half reduction of traffic prediction error, when considering weather conditions.

Funder

National Key Research and Development Program of China

Natural Science Foundation of Guangdong Province

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

General Environmental Science

Reference38 articles.

1. An Extended Car-Following Model Considering Driver's Sensory Memory and the Backward Looking Effect;Chen;Physica A: Stat. Mech. its Appl.,2019

2. Assess the Impacts of Different Autonomous Trucks' Lateral Control Modes on Asphalt Pavement Performance;Chen;Transportation Res. C: Emerging Tech.,2019

3. A Review on Traffic Prediction Methods for Intelligent Transportation System in Smart Cities;Chen,2020

4. Short-term Traffic Flow Prediction Method for Urban Road Sections Based on Space-Time Analysis and GRU;Dai;IEEE Access,2019

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3