Author:
Ye Zhipeng,Wang Weijun,Wang Xin,Yang Feng,Peng Fei,Yan Kun,Kou Huadong,Yuan Aijing
Abstract
Distributed acoustic sensing (DAS) is an emerging technology that transforms a typical glass telecommunications cable into a network of seismic sensors. DAS may, therefore, concurrently record the vibrations of passing vehicles over tens of kilometers and shows potential to monitor traffic at a low cost with minimal maintenance. With big-data DAS recording, automatically recognizing and tracking vehicles on the road in real time still presents numerous obstacles. Therefore, we present a deep learning technique based on the unified real-time object detection algorithm to estimate traffic flow and vehicle speed in DAS data and evaluate them along a 500-m fiber length in Beijing’s suburbs. We reconstructed the DAS recordings into 1-min temporal–spatial images over the fiber section and manually labeled about 10,000 images as vehicle passing or background noise. The precision to identify the passing cars can reach 95.9% after training. Based on the same DAS data, we compared the performance of our method to that of a beamforming technique, and the findings indicate that our method is significantly faster than the beamforming technique with equal performance. In addition, we examined the temporal traffic trend of the road segment and the classification of vehicles by weight.
Funder
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献