Chemical Compositions in Winter PM2.5 in Changzhou of the Yangtze River Delta Region, China: Characteristics and Atmospheric Responses Along With the Different Pollution Levels

Author:

Zhao Zhuzi,Sun Ning,Zhou Wenlin,Ma Shuaishuai,Li Xudong,Li Malong,Zhang Xian,Tang Shishi,Ye Zhaolian

Abstract

Changzhou, a typical industrial city located in the center of the Yangtze River Delta (YRD) region, has experienced serious air pollution in winter. However, Changzhou still receives less attention compared with other big cities in YRD. In this study, a four-month PM2.5 sampling campaign was conducted in Changzhou, China from 1 November 2019, to 1 February 2020. The period covers the entire wintertime and includes first week of the Level 1 response stage of the lockdown period due to the outbreak of COVID-19. The mean PM2.5 concentrations were 67.9 ± 29.0 μg m−3, ranging from 17.4 to 157.4 μg m−3. Secondary inorganic ions were the most abundant species, accounting for 37 and 50% during the low and high PM2.5 pollution periods, respectively. Nitrogen oxidation ratio (NOR) during the high PM concentration level period was twice the low PM concentration period whereas sulfur oxidation ratio (SOR) showed a less significant increase. This represents that nitrate formation is potentially the predominant factor controlling the occurrence of PM pollution. The analysis of NOR, SOR as functions of relative humidity (RH) and ozone (O3) concentrations suggest that the sulfate formation was mainly through aqueous-phase reaction, while nitrate formation was driven by both photochemistry and heterogeneous reaction. And, excess ammonium could promote the formation of nitrate during the high PM period, indicating that ammonia gas played a critical role in regulating nitrate. Furthermore, a special period-Chinese New Year overlapping first week of COVID-19 lockdown period, offered a precious window to study the impact of human activity pattern changes on air pollution variation. During the special period, the average PM2.5 mean concentration was 60.4 μg m−3, which did not show in a low value as expected. The declines in nitrogen oxide (NOx) emissions led to rapid increases in O3 and atmospheric oxidizing capacity, as well as sulfate formation. The chemical profiles and compositions obtained during different periods provide a scientific basis for establishing efficient atmospheric governance policies in the future.

Funder

State Key Laboratory of Loess and Quaternary Geology

Jiangsu Innovation and

Publisher

Frontiers Media SA

Subject

General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3