Elucidate the formation mechanism of particulate nitrate based on direct radical observations in the Yangtze River Delta summer 2019

Author:

Zhai Tianyu,Lu KedingORCID,Wang HaichaoORCID,Lou ShengrongORCID,Chen Xiaorui,Hu Renzhi,Zhang Yuanhang

Abstract

Abstract. Particulate nitrate (NO3-) is one of the dominant components of fine particles in China, especially during pollution episodes, and has a significant impact on human health, air quality, and climate. Here a comprehensive field campaign that focuses on the atmospheric oxidation capacity and aerosol formation and their effects in the Yangtze River Delta (YRD) was conducted from May to June 2019 at a regional site in Changzhou, Jiangsu Province in China. The concentrations of NO3-, OH radicals, N2O5, NO2, O3, and relevant parameters were measured simultaneously. We showed a high NO3- mass concentration with 10.6 ± 8.9 µg m−3 on average, which accounted for 38.3 % of total water-soluble particulate components and 32.0 % of total PM2.5, followed by the proportion of sulfate, ammonium, and chloride by 26.0 %, 18.0 %, and 2.0 %, respectively. This result confirmed that the heavy nitrate pollution in eastern China happened not only in winter, but also in summer. This study's high nitrate oxidation ratio (NOR) emphasized the solid atmospheric oxidation and fast nitrate formation capacity in the YRD. It was found that OH + NO2 during daytime dominated nitrate formation on clean days, while N2O5 hydrolysis vastly enhanced and became comparable with that of OH + NO2 during polluted days (67.2 % and 30.2 %, respectively). The updated observed-constraint Empirical Kinetic Modeling Approach (EKMA) was used to assess the kinetic controlling factors of both local O3 and NO3- productions, which indicated that the O3-targeted scheme (VOCs : NOx = 2:1) is adequate for mitigating the O3 and nitrate pollution coordinately during summertime in this region. Our results promote the understanding of nitrate pollution mechanisms and mitigation based on field observation and model simulation and call for more attention to nitrate pollution in the summertime.

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3