Landslide susceptibility mapping using O-CURE and PAM clustering algorithms

Author:

Mwakapesa Deborah Simon,Lan Xiaoji,Nanehkaran Yaser Ahangari,Mao Yimin

Abstract

Landslide susceptibility mapping (LSM) is a crucial step during landslide assessment and environmental management. Clustering algorithms can construct effective models for LSM. However, a random selection of important parameters, inconsideration of uncertain data, noise data, and large datasets can limit the implementation of clustering in LSM, resulting in low and unreliable performance results. Thus, to address these problems, this study proposed an optimized clustering algorithm named O-CURE, which combines: the traditional Clustering Using REpresentatives algorithm (CURE), that is, efficient for large datasets and noise data, the partition influence weight (PIW)-based method to enhance the selection of sample sets and the city block distance (CIBD) for processing of the uncertain data in CURE clustering during LSM modeling. A database containing 293 landslide location samples, 213 non-landslide samples, and 7 landslide conditioning factors was prepared for the implementation and evaluation of the method. Also, a Multicollinearity analysis was conducted to select the most appropriate factors, and all the factors were acceptable for modeling. Based on O-CURE, landslide density, and the partitioning around medoids (PAM) algorithm a susceptibility map was constructed and classified into very high (33%), high (18%), moderate (24%), low (13%), and very low (12%) landslide susceptible levels. To evaluate the performance of the O-CURE model, five statistic metrics including accuracy, sensitivity, specificity, kappa, and AUC were applied. The analysis shows that O-CURE obtained accuracy = .9368, sensitivity = .9215, specificity = .9577, kappa = .8496, and AUC = .896 is an indication of high-performance capability. Also, the proposed method was compared with the CURE algorithm, three existing clustering methods, and popular supervised learning methods. From this assessment, O-CURE outperformed the other clustering methods while showing significant and more consistent performance than the supervised learning methods. Therefore, we recommend that the O-CURE model and the constructed map can be useful in assessing landslides and contribute to sustainable land-use planning and environmental management in light of future disasters.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

General Environmental Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3