Landslide Susceptibility Mapping in the Commune of Oudka, Taounate Province, North Morocco: A Comparative Analysis of Logistic Regression, Multivariate Adaptive Regression Spline, and Artificial Neural Network Models

Author:

Benchelha Said1,Aoudjehane Hasnaa Chennaoui1,Hakdaoui Mustapha2,El Hamdouni Rachid3,Mansouri Hamou4,Benchelha Taoufik1,Layelmam Mohammed5,Alaoui Mustapha6

Affiliation:

1. GAIA Laboratory, Hassan II University of Casablanca, Faculty of Sciences, Aïn Chock, Morocco

2. LGAGE Laboratory, Hassan II University of Casablanca, Faculty of Sciences, Ben M'sik, Morocco

3. Department of Civil Engineering, University of Granada, Granada 18071, Spain

4. Laboratoire Public d'Essai et d'Etudes (LPEE), Casablanca, Morocco

5. Hassan II Agronomic and Veterinary Institute, Rabat, Morocco

6. Laboratory of Management and Valorization of Natural Resources, Faculty of Science and Technology, Sultan Moulay Slimane University, Beni Mellal, Morocco

Abstract

ABSTRACT Landslide susceptibility indices were calculated and landslide susceptibility maps were generated for the Oudka, Morocco, study area using a geographic information system. The spatial database included current landslide location, topography, soil, hydrology, and lithology, and the eight factors related to landslides (elevation, slope, aspect, distance to streams, distance to roads, distance to faults, lithology, and Normalized Difference Vegetation Index [NDVI]) were calculated or extracted. Logistic regression (LR), multivariate adaptive regression spline (MARSpline), and Artificial Neural Networks (ANN) were the methods used in this study to generate landslide susceptibility indices. Before the calculation, the study area was randomly divided into two parts, the first for the establishment of the model and the second for its validation. The results of the landslide susceptibility analysis were verified using success and prediction rates. The MARSpline model gave a higher success rate (AUC (Area Under The Curve) = 0.963) and prediction rate (AUC = 0.951) than the LR model (AUC = 0.918 and AUC = 0.901) and the ANN model (AUC = 0.886 and AUC = 0.877). These results indicate that the MARSpline model is the best model for determining landslide susceptibility in the study area.

Publisher

GeoScienceWorld

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3