Spatio-Temporal High-Resolution Subsoil Compaction Risk Assessment for a 5-Years Crop Rotation at Regional Scale

Author:

Kuhwald Michael,Kuhwald Katja,Duttmann Rainer

Abstract

Soil compaction results whenever applied soil stress by machinery exceed the soil strength. Both, soil strength and stress, are spatially and temporally highly variable, depending on the weather situation, the current crop type, and the machinery used. Thus, soil compaction risk is very dynamic, changes from day to day and from field to field. The objective of this study was to analyze the spatio-temporal dynamics of soil compaction risk and to identify hot-spot areas of high soil compaction risk at regional scale. Therefore, we selected a study area (∼2,000 km2) with intensive arable farming in Northern Germany, having a high share of cereals, maize and sugar beets. Sentinel-2 images were used to derive the crop types for a 5-years crop rotation (2016–2020). We calculated the soil compaction risk using an updated version of the SaSCiA-model (Spatially explicit Soil Compaction risk Assessment) for each single day of the period, with a spatial resolution of 20 m. The results showed the dynamic changes of soil compaction risk within a year and throughout the entire crop rotation. The relatively dry years 2016 and 2018–2020 reduced the soil compaction risk even at high wheel loads applied to soil during maize and sugar beet harvest. Contrary, high precipitation in 2017 increased the soil compaction risk considerably. Focusing on the complete 5-year period, 2.7% of the cropland area was identified as hot-spots of soil compaction risk, where the highest soil compaction risk class (“extremely high”) occurred every year. Additionally, 39.8% of the cropland was affected by “extremely high” soil compaction at least in one of the 5 years. Although the soil compaction risk analysis does not provide information on the actual extent of the compacted area, the identification of risk areas within a period may contribute to understand the dynamics of soil compaction risk in crop rotation at regional scale and provide advice to mitigate further soil compaction in areas classified as high risk.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3