Wheel Load and Wheel Pass Frequency as Indicators for Soil Compaction Risk: A Four-Year Analysis of Traffic Intensity at Field Scale

Author:

Augustin KatjaORCID,Kuhwald MichaelORCID,Brunotte Joachim,Duttmann RainerORCID

Abstract

Avoiding soil compaction is one of the objectives to ensure sustainable agriculture. Subsoil compaction in particular can be irreversible. Frequent passages by (increasingly heavy) agricultural machinery are one trigger for compaction. The aim of this work is to map and analyze the extent of traffic intensity over four years. The analysis is made for complete seasons and individual operations. The traffic intensity is distinguished into areas with more than five wheel passes, more than 5 Mg and 3 Mg wheel load. From 2014 to 2018, 63 work processes on a field were recorded and the wheel load and wheel passes were modeled spatially with FiTraM. Between 82% (winter wheat) and 100% (sugar beet) of the total infield area is trafficked during a season. The sugar beet season has the highest intensities. High intensities of more than five wheel passes and more than 5 Mg wheel load occur mainly during harvests in the headland. At wheel load ≥3 Mg, soil tillage also stresses the headland. In summary, no work process stays below one of the upper thresholds set. Based on the results, the importance of a soil-conserving management becomes obvious in order to secure the soil for agriculture in a sustainable way.

Funder

Federal Ministry of Education and Research

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3