Trace metal fate in soil after application of digestate originating from the anaerobic digestion of non-source-separated organic fraction of municipal solid waste

Author:

Baldasso Veronica,Bonet-Garcia Neus,Sayen Stéphanie,Guillon Emmanuel,Frunzo Luigi,Gomes Carlos A. R.,Alves Maria João,Castro Ricardo,Mucha Ana Paula,Almeida C. Marisa R.

Abstract

Introduction: Digestate originating from anaerobic digestion of non-source-separated organic fraction of municipal solid waste (OFMSW) is produced abundantly worldwide and generally discarded in landfills. However, it can be a valuable resource for many bioeconomy strategies as land restoration, only if a consolidated understanding of the contaminants’ presence and behaviour in digestate-amended soil is achieved. This study aimed to investigate the fate of trace metals, namely Zn, Cu, Pb, and Cr found in the digestate, along the soil profile after digestate application on soil, and the influence that other contaminants as pharmaceutical compounds can have on their behaviour in the soil system.Methods: For that, a 90-day soil column experiment was conducted using a fine loamy sand soil topped with a layer of digestate-amended soil. Digestate-amended soil had a soil to digestate proportion of 14 to 1 (dry weight). Two experimental conditions were tested: soil amended with digestate, and soil amended with digestate spiked with the antidiabetic drug metformin. Soil samples were taken at 4 depths on days 1, 7, 21, 35 and 90, and total trace metals concentrations and fractionation were determined via atomic absorption spectroscopy.Results: Results showed that Zn, Cu, Pb ad Cr initially present in the digestate were transferred from the digestate-amended soil layer to the underlying soil layer over time, although in low amounts. Nevertheless, no transfer was detected to the deeper soil layers. Trace metals in soil were predominantly in immobile and less bioavailable forms associated with clay and silicate mineral groups, whereas in the digestate-amended soil they were in more bioavailable forms, which could be related to metals’ migration in the soil layers below. Results also show that the presence of metformin had no influence on trace metal behaviour, giving insight also on possible interactions with other potentially present contaminants as microplastics.Conclusion: The current study showed that OFMSW digestate can be a promising organic nutrient-rich matrix for land restoration even if it may contain high metals’ concentrations because low metal mobility along the soil profile can be expected.

Funder

H2020 Marie Skłodowska-Curie Actions

Publisher

Frontiers Media SA

Subject

General Environmental Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3