Metal mobility in an anaerobic-digestate-amended soil: the role of two bioenergy crop plants and their metal phytoremediation potential

Author:

Bonet-Garcia Neus,Baldasso Veronica,Robin Valentin,Gomes Carlos R.,Guibaud Gilles,Alves Maria João,Castro Ricardo,Mucha Ana Paula,Almeida C. Marisa R.

Abstract

Panicum virgatum and Pennisetum alopecuroides, two non-food bioenergy crops, were evaluated for their capacity to phyto-manage trace metals (Pb, Zn, Ni, Fe, Mn, Co, Cr, and Cu) from municipal solid waste digestate after its application to a marginal soil. For that, 90-day vertical soil column mesocosm (columns with 0.6 × 0.2 m) experiments were carried out to assess 1) the impact of digestate application on the health of marginal soil, 2) plant effect on digestate-borne trace metals’ mobility along the soil profile (measuring total metal levels and fractionation in different soil layers by atomic absorption spectroscopy, and 3) plant growth performance and trace metal (Pb, Zn, and Cu) uptake capacity. The results showed that trace metals were mostly confined in the 0–0.2 m soil horizon over the course of the experimental period, migrating from the digestate-amended soil layer (0–0.1 m) to the layer underneath (0.1–0.2 m) within the first 21 days and remaining stable afterward. No evidence of the trace metals’ mobility to deeper soil layers was detected. Migration of trace metals was reduced in the presence of P. virgatum and P. alopecuroides, suggesting a phytoremediation (phytostabilization) effect. For both plant species, no trace metal accumulation in the roots was observed (bioconcentration factor <1), although both plants showed a potential for Zn translocation for aboveground tissues (translocation factor >1). The growth of both plants was positively affected by municipal solid waste digestate application, which also improved soil quality (increased concentration of total organic carbon and available phosphorus, as well as cation exchange capacity and water holding capacity).

Funder

H2020 Marie Skłodowska-Curie Actions

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3