Oxidative stress physiology in Scylla serrata for environmental health assessment

Author:

Pati Samar Gourav,Panda Falguni,Paital Biswaranjan,Sahoo Dipak Kumar,Jena Srikanta

Abstract

The oxidative stress (OS) condition and antioxidant level as a function of pH, few major elements, temperature, turbidity, organic carbon, sediment, and water salinity are vital to understanding the redox homeostasis of inhabiting animals. These parameters are also used to monitor environmental health. A spatiotemporal redox antioxidant system, followed by discriminant function analysis about the aforementioned abiotic factors, was investigated in the muscle, gill, and hepatopancreas of the mud crab, Scylla serrata, sampled from the Indian coastal belt along the Bay of Bengal (Tamil Nadu and Odisha) and the Arabian Sea (Gujarat) as a measure of environmental health assessment. Results revealed that the redox homeostasis of mud crabs significantly varied with seasonal fluctuations of abiotic factors and sediment chemistry. The level of superoxide dismutase and the non-protein-SH group were negatively correlated, whereas other antioxidant molecules with lipid peroxidation levels were positively correlated with abiotic factors. Only the activities of glutathione peroxidase and glutathione reductase were strongly correlated with all the abiotic factors. The hepatopancreas was found to be the most susceptible organ to OS. The lipid peroxidation level was 20–25 times higher in hepatopancreatic tissue than that in other tissues. The antioxidant level was elevated to 200% during the summer compared to the rainy season. Thus, the results of redox homeostasis in S. serrata may be useful for monitoring the ecotoxic effects of estuarine and marine environments and managing the inhabiting species.

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3